summaryrefslogtreecommitdiff
path: root/src/vk/skeletal_model.cpp
blob: b2d5fc33ecd5982ae14cb37757c487e00178c5fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
 * Copyright 2022-2023 Frederico de Oliveira Linhares
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "skeletal_model.hpp"

#include "../core.hpp"
#include "uniform_data_object.hpp"

namespace
{

void
load_uniform_buffers(void *obj)
{
  auto self = static_cast<VK::SkeletalModel*>(obj);

  try
  {
    self->uniform_buffers.reserve(cg_core.vk_swapchain->images_count);
    for(auto i{0}; i < cg_core.vk_swapchain->images_count; i++)
      self->uniform_buffers.emplace_back(
	cg_core.vk_device_with_swapchain, sizeof(VK::UDOSkeletalModel));
  }
  catch(const std::exception& e)
  {
    throw CommandError{e.what()};
  }
}

void
unload_uniform_buffers(void *obj)
{
  auto self = static_cast<VK::SkeletalModel*>(obj);

  self->uniform_buffers.clear();
}

void
load_descriptor_set_pool(void *obj)
{
  auto self = static_cast<VK::SkeletalModel*>(obj);

  std::array<VkDescriptorPoolSize, 1> descriptor_pool_sizes{};
  descriptor_pool_sizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
  descriptor_pool_sizes[0].descriptorCount =
    self->uniform_buffers.size();

  VkDescriptorPoolCreateInfo pool_info{};
  pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
  pool_info.pNext = nullptr;
  pool_info.flags = 0;
  pool_info.maxSets = self->uniform_buffers.size();
  pool_info.poolSizeCount = descriptor_pool_sizes.size();
  pool_info.pPoolSizes = descriptor_pool_sizes.data();

  if(vkCreateDescriptorPool(
       self->skeletal_mesh->queue_family->device->device, &pool_info, nullptr,
       &self->descriptor_pool) != VK_SUCCESS)
    throw CommandError{"Failed to create a Vulkan descriptor pool."};
}

void
unload_descriptor_set_pool(void *obj)
{
  auto self = static_cast<VK::SkeletalModel*>(obj);

  vkDestroyDescriptorPool(
    self->skeletal_mesh->queue_family->device->device, self->descriptor_pool,
    nullptr);
}

void
load_descriptor_sets(void *obj)
{
  auto self = static_cast<VK::SkeletalModel*>(obj);

  std::vector<VkDescriptorSetLayout> layouts(
    cg_core.vk_swapchain->images_count,
    cg_core.vk_descriptor_set_layout->model);

  VkDescriptorSetAllocateInfo alloc_info{};
  alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
  alloc_info.descriptorPool = self->descriptor_pool;
  alloc_info.descriptorSetCount = layouts.size();
  alloc_info.pSetLayouts = layouts.data();

  self->descriptor_sets.resize(layouts.size());
  if(vkAllocateDescriptorSets(
       self->skeletal_mesh->queue_family->device->device, &alloc_info,
       self->descriptor_sets.data()) != VK_SUCCESS)
    CommandError{"Failed to create Vulkan descriptor set."};
}

void
load_buffers_to_descriptor_sets(void *obj)
{
  auto self = static_cast<VK::SkeletalModel*>(obj);

  for(auto i{0}; i < self->uniform_buffers.size(); i++)
  {
    VkDescriptorBufferInfo buffer_info{};
    buffer_info.buffer = self->uniform_buffers[i].buffer;
    buffer_info.offset = 0;
    buffer_info.range = sizeof(VK::UDOSkeletalModel);

    std::array<VkWriteDescriptorSet, 1> write_descriptors{};
    write_descriptors[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    write_descriptors[0].dstSet = self->descriptor_sets[i];
    write_descriptors[0].dstBinding = 0;
    write_descriptors[0].dstArrayElement = 0;
    write_descriptors[0].descriptorCount = 1;
    write_descriptors[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    write_descriptors[0].pBufferInfo = &buffer_info;
    write_descriptors[0].pImageInfo = nullptr;
    write_descriptors[0].pTexelBufferView = nullptr;

    vkUpdateDescriptorSets(
      cg_core.vk_device_with_swapchain->device, write_descriptors.size(),
      write_descriptors.data(), 0, nullptr);
  }
}

static const CommandChain loader{
  {&load_uniform_buffers, &unload_uniform_buffers},
  {&load_descriptor_set_pool, &unload_descriptor_set_pool},
  {&load_descriptor_sets, nullptr},
  {&load_buffers_to_descriptor_sets, nullptr}
};

}

namespace VK
{

SkeletalModel::SkeletalModel(
  std::shared_ptr<SkeletalMesh> skeletal_mesh,
  std::shared_ptr<Texture> texture, std::shared_ptr<glm::vec3> position,
  std::shared_ptr<glm::vec3> rotation):
  skeletal_mesh{skeletal_mesh},
  texture{texture},
  position{position},
  rotation{rotation},
  animation_index{0},
  animation_time{0.0f},
  bone_transforms(SKELETAL_MESH_MAX_NUM_OF_BONES)
{
  loader.execute(this);

  for(int i{0}; i < skeletal_mesh->bones.size(); i++)
    this->bone_transforms[i] = skeletal_mesh->bones[i].offset_matrix;
}

SkeletalModel::~SkeletalModel()
{
  loader.revert(this);
}

void
SkeletalModel::tick(float delta)
{
  VK::Animation *current_animation =
    &this->skeletal_mesh->animations[this->animation_index];

  { // update time
    this->animation_time += delta;
    if(this->animation_time > current_animation->final_time)
    {
      this->animation_time -= current_animation->final_time;
      for(VK::BoneTransform &bone_transform:
	    current_animation->bone_transforms)
      {
	bone_transform.positions.current_index = 0;
	bone_transform.rotations.current_index = 0;
	bone_transform.scales.current_index = 0;
      }
    }
  }

  for(int i{0}; i < current_animation->bone_transforms.size(); i++)
  {
    VK::BoneTransform *bone_transform = &current_animation->bone_transforms[i];

    auto position{bone_transform->positions.interpolate(
	this->animation_time,
	[](glm::vec3 frame)
	  {
	    return glm::translate(glm::mat4(1.0f), frame);
	  },
	[](glm::vec3 previous_frame, glm::vec3 next_frame, float scale_factor)
	  {
	    glm::vec3 final_position{glm::mix(
		previous_frame, next_frame, scale_factor)};
	    return glm::translate(glm::mat4(1.0f), final_position);
	  })};

    auto rotation{bone_transform->rotations.interpolate(
	this->animation_time,
	[](glm::quat frame)
	  {
	    return glm::toMat4(glm::normalize(frame));
	  },
	[](glm::quat previous_frame, glm::quat next_frame, float scale_factor)
	  {
	    return glm::toMat4(glm::slerp(
				 previous_frame, next_frame, scale_factor));
	  })};

    auto scale{bone_transform->scales.interpolate(
	this->animation_time,
	[](glm::vec3 frame)
	  {
	    return glm::scale(glm::mat4(1.0f), frame);
	  },
	[](glm::vec3 previous_frame, glm::vec3 next_frame, float scale_factor)
	  {
	    glm::vec3 scale{glm::mix(
		previous_frame, next_frame, scale_factor)};
	    return glm::scale(glm::mat4(1.0f), scale);
	  })};

    this->bone_transforms[i] = position * rotation * scale;
  }
}

}